This invention relates to devices for balancing rotary bodies, such as automobile wheels. The principal object of the invention is to provide a device that can be easily carried by hand and readily mounted as a complete unit on a wheel for rotation therewith to quickly and accurately determine the amount of unbalance thereof, and the location and amount of weight required to counterbalance such unbalance without dismounting the wheel from the automobile. Other objects of the invention are simplicity and cheapness of construction, compactness of design, and lightness of weight.

The invention consists in the wheel assembly device and in the parts and combinations and arrangement of parts hereinafter described and claimed.

In the drawings:

Fig. 1 is a side elevational view of one side of the front end of a motor vehicle showing the improved wheel balancer installed thereon.

Fig. 2 is an edge view of an automobile wheel, partly in section, and taken along the line 2--2 of Fig. 1.

Fig. 3 is a front view of the wheel balancer.

Fig. 4 is a sectional view taken along the line 4--4 of Fig. 1.

Fig. 5 is a plan view of a wheel attaching member looking in the direction of the line 5--5 of Fig. 4.

Fig. 6 is a sectional view taken along the line 6--6 of Fig. 5.

Fig. 7 is an enlarged rear view of the improved wheel balancer with parts omitted for showing detail.

Fig. 8 is an enlarged sectional view taken along the line 8--8 of Fig. 3.

Fig. 9 is a side elevational view, partly in section, of the balancing weight adjusting means.

Fig. 10 is a sectional view taken along the line 10--10 of Fig. 9.

Fig. 11 is a sectional view taken along the line 11--11 of Fig. 9.

Fig. 12 is a sectional view taken along the line 12--12 of Fig. 11.

Fig. 13 is a sectional view taken along the line 13--13 of Fig. 11.

Fig. 14 is a sectional view taken along the line 14--14 of Fig. 13.

Fig. 15 is a sectional view taken along the line 15--15 of Fig. 11.

Fig. 16 is a sectional view taken along the line 16--16 of Fig. 11.

Fig. 17 is a sectional view taken along the line 17--17 of Figs. 7 and 15.

Fig. 18 is an enlarged detail view showing the balancing weight pointer assembled in the adjusting mechanism.

Fig. 19 is an enlarged perspective view of the pointer.

Fig. 20 is a plan view of a modified form of balancing weight.

Fig. 21 is a sectional view taken along the line 21--21 in Fig. 20.

Fig. 22 is a plan view of the pointer and balancing weight indicia looking in the direction of line 22--22 of Fig. 21; and

Fig. 23 is a sectional view of a modified form of balancing device attaching means.

The preferred embodiment of the device is shown in Figs. 1--19 for determining the unbalance of an automobile wheel A and the location and amount of weight required to correct such unbalance and comprises a cage 7 (Figs. 9--18) having a circular outer end wall 8, an annular inner end wall 9 concentric with said outer end wall, two diametrically opposite longitudinal bridges 10 and 11 integrally connecting said outer and inner end walls in axially spaced relation, and a circular plate 12 secured by flatwise screws 13 to an outstanding annular rib 14 formed on the outer end face of said annular end wall around the inner periphery thereof. The end closure plate 12 extends radially outwardly of the annular rib 14 and forms therewith and with the annular inner end wall 5 of the cage 7 a peripheral annular groove 18 therein in which is rotatably supported a gear ring 17 which is riveted to a cup-shaped mounting disc 16 of considerably larger diameter than said inner wall and opens away therefrom. The annular inner end wall 5 of the cage 7 has a rim flange 19 extending in the direction of the outer end wall 8 of said cage; and said cage is provided with a cylindrical casing or cover 19 whose inner end seats on and is secured by screws 20 to said rim flange and whose outer end has an inturned annular flange 21 seating against the outer face of the outer end wall 8 of said cage. The cage 7 with its casing 19 forms a closed cylindrical housing and the rotary connection between the inner end of said housing and the cup-shaped mounting disc 16 permits relative rotary movement of said housing and disc.

Extending through an axial hole provided therefor in the inner end wall 9 of the cage 7 is a stud 22 having an annular shoulder 23 that abuts against the outer face of said wall and a threaded inner end portion on which is threaded a nut 24 for rigidly clamping said stud to said
plate. Extending through cage 7 axially thereof is a shaft 25, one end of which is journalled in an axial bore 26 provided therefor in stud 22 and the other end of which is fixed to a bushing 25c secured thereto some distance outwardly from the outer end wall 8 of said cage. Located within the cage is a worm 27 which is mounted on shaft 25 for rotation therewith adjacent to the supporting stud 22. The worm 27 intermeshes with a worm gear 28 (Fig. 16) fixed to a cross shaft 29 journaled near one end in a bearing 30 provided therefor on the longitudinal bridge 10 of said cage. At its opposite end the cross shaft 29 is journaled in a bearing 31 provided therefor in the annular inner end wall 9 of the cage 7 and is provided with a spur gear 32 that intermeshes with a spur gear 33 mounted on a shaft 34 supported radially of cage 7 in a bearing 35 formed on the inner face of the annular inner end wall 9 of said cage and a bearing 36 (Fig. 11) formed on the inner face of the rim flange 18 of said wall. The spur gear 33 rotates through an opening 37 which extends through the annular inner end wall 9 of the cage and opens into the annular peripheral groove 15 in the cage; and said gear intermeshes with a circular gear radially cut in the disc 47 supported in said groove. By this arrangement, relative rotary movement is imparted to cage 7 and the mounting disc by manipulating the knob 35c fixed to the exposed outer end of shaft 25.

Journalled on shaft 25 is a tubular shaft 39 whose inner end terminates inside the cage 7 where it is provided with a spur gear 40 that intermeshes with a spur gear idler 41 journaled on a pin 42 secured in walls 8 and 9, a combination sleeve and bearing 43 spacing the gear 41 from wall 8. The spur gear idler 41 meshes with the spur gear 32 of the cross shaft 29 journaled on a pin 45 secured in end walls 8 and 9 parallel to pin 42. The gear 44 is spaced from wall 9 by a combination sleeve and bearing 45. The gear 44 meshes with a gear 47 integral with worm 50 such that each being suitably secured to shaft 25 by means of a pin 48. The tubular shaft 39 extends outwardly beyond the outer end of the cage 7 where it is provided, just inwardly of the operating knob 25c, with an operating knob 39a. By this arrangement relative rotary movement may be imparted to the cage end ring gear 47 by means of knob 35c as well as by means of the knob 39a.

Journalled on the tubular shaft 39 is a tubular shaft 49 terminating inside of cage 7 in worm 50 that intermeshes with a worm gear 51 fixed to a cross shaft 52 journaled in bearings 53 provided therefor in the bridge member 11 of the cage. The tubular operating shaft 49 extends beyond the outer end wall 8 of cage 7 and has an operating knob 49c fixed thereto just inwardly of the operating knob 39c for the operating shaft 39.

Fixed to the cross shaft 52 is a beveled pinion 54 that intermeshes continuously with two beveled gears 55 and 56, respectively. The beveled gear 55 is fixed to a shaft 57 and the beveled gear 56 is fixed to a tubular shaft 58 journaled on shaft 57, both shafts being disposed alongside of the tubular shaft 49 in spaced parallel relation thereto. The shaft 57 is supported at one end in a bearing 59 provided therefor in the outer end wall 8 of the cage 7. At the other or inner end of the cage the shafts 57 and 58 extend through a bushing 60 in a hole in the end wall 9 of the cage. The tubular shaft 58 projects beyond the end wall 9 and has a spur gear 61 fixed thereto having a hub 61a abutting the bushing 63 mounted in the end wall 9. The shaft 57 also has a spur gear 62 secured thereto outwardly of and of the same size as spur gear 51 secured to the tubular shaft 58.

Rotatable on the tubular operating shaft 58 and in the central opening in the outer end wall 8 of the cage is a tubular operating shaft 59 provided just inside of said cage with a spur gear 64. The shaft 59 extends outside of the cage and an operating knob 63a is secured to the outer end of said shaft between the outer end wall of said cage and the operating knob 43a for the tubular operating shaft 49. The spur gear 64 meshes with a spur gear idler 65 (Fig. 12) journaled on pin 42 and is held in axially spaced relation on said pin from gear 41. A sleeve 66 and a combination sleeve and bearing 67 spaces gear 68 from the end wall 8 and from gear 41. The spur gear idler 65 meshes with spur gear idler 66 journaled on pin 45 and is held in axially spaced relation with respect to gear 44 by a sleeve 69, and a combination sleeve and bearing 70 spaces gear 68 from the end wall 8. The spur gear idler 66 meshes with spur gear 61 of 71 that is disposed radially to and integral with the worm 50 on shaft 49.

The knob 25c is locked to shaft 25 by suitable screws and the other knobs are held in spaced relation by abutting the adjacent knob and a shoulder on the shaft on which the knob is carried. The bores of knobs 39a, 49a and 55c have a flat surface therein engaging a cooperating flat surface on the respective shafts for preventing relative rotation between the knobs and the shafts.

A member 72 is disposed between the spur gear 40 and worm 50 on the hollow shaft 39 and pin 42 and its associated sleeve 66 and is used as a torque plate for separating worm 50 and gear 40 and preventing the actuation of one gear by the other gear.

Journalled on the central stud 22, between the flange on the flange screw 73 therein and the outer face of the end wall 9 of the inner end of cage 7, are two separate arms 74 and 75 disposed radially of said cage inside of the cup-shaped mounting disc 16 at said end of the cage and terminating at their respective outer ends in weights 76 and 76a (Fig. 7) of the same size and shape. The weight arm 74 is provided with an arcuate gear rack 77 disposed concentric to the supporting stud or pivot 23 therefor and intermeshes with the spur gear 61 on the tubular countershaft 58; and the weight arm 75 is provided with a similar arcuate rack 78 that intermeshes with the spur gear 62 on the solid countershaft 57. Secured to the weight arm 75 that intermeshes with the spur gear 62 on the tubular countershaft 58 is a pointer 79 offset laterally to extend through an arcuate slot 80 in the end wall 9, and thence radially outwardly to form an angle and a point directly inside of a transparent window 81 in cover 19. The pointer 79 has a projection 79a extending into an aperture 74b in arm 74 for preventing relative rotation therewithin. The slot 80 is of sufficient length to accommodate an 80 degree relative rotary movement of the pointer 79 and the cage 7; and the window 81 in casing 19 has a scale 82 marked thereon along one arc of the pointer and graduated in ounces and fractions thereof. The cage casing 19 also has a longitudinal counterweight locating mark 83 on the outer peripheral
surface thereof, said mark being located in a plane disposed radially of cage 7 and passing through the axes of countershafts 57 and 58 and the axis of shaft 54 for swinging weight arms 74 and 75 about the axis of that axis.

The cup-shaped mounting disc 16 (Figs. 1-7) is provided with four circumferentially spaced mounting fingers 84 extending radially thereof through slots 85 in the outer peripheral wall of said disc just inwardly of a curbed rim portion 89 thereof. Each of these legs is in the form of a flat plate provided with an indentation 87 engageable with a wall of slot 85 for limiting radial inward movement. Each of the fingers 84 is slidably mounted in a U-shaped bracket 93 whose base is suitably secured to disc 16, as by riveting, the plate being located in slots in the legs 83 and 90 of the bracket 88. The leg 83 is provided with a flange 91 to which a member 92 is secured by means of screws 93 extending through slots in the member, the slots permitting adjustment of the member. The member 92 is bent to the contour of the flange 91 and leg 90 and has a pointer 94 thereon that cooperates with a scale 95 cut into the upper face of finger 84, the scale being marked in fractions of inches for correctly adjusting the diameter of the wheel balance so that it may be quickly and accurately assembled in a wheel to be tested.

Radial adjustment of the finger 84 is accomplished in two steps, one large and one small adjustment. A lead screw 96 is positioned between legs 83 and 90 of the bracket 88 and is rotatably mounted therein, a knob 97 being secured thereon for utilizing the rotation of the screw. A travel 98 is threaded onto screw 96 and has a slot 99 therein in which one edge of finger 84 is received. The travel has a second slot 100 therein and a pull-pin 101 is slidably received in suitable apertures cut in the jaws of the slots 83 and 90.

A modified form of holding means for the finger 84 is shown in Fig. 23 in which a hook 110 is placed in the chain slot 118 of the wheel A that engages the spider 120, the hook being threaded 112 one end, the threaded end extending through an aperture in finger 84 and clamped thereto by a nut 121. This hook is employed on all wheels having chain slots therein or other formation in which they can be inserted.

When it is desired to balance the automobile wheel A, the hereinbefore described balancing device is mounted on said wheel on vehicle 122 concentric therewith by placing the cup-shaped mounting disc 16 opposite the outer face of the wheel and seating the curved ends of the mounting finger 84 of said disc in the concave annular depression formed in the outside face of the wheel rim by the outwardly curved peripheral outside marginal rim flange of the rim thereof, said finger having been previously adjusted for the rim diameter of the wheel. The ends of the mounting fingers 84 are then positioned on the rim flanges of the wheel, the curved ends 84a fitting against the curve in the wheel rim. By this arrangement the entire balancing device, including the cage 7, mounting disc 16, and balancing weights 76 and 76a, is secured to the wheel concentric therewith for rotation about the axis thereof. One of the knobs 49 and 63a is then turned to move the balancing weights 76 and 76a relative to one another into a slidably unbalanced position, such that both weights are in a position, say with the pointer 70 at the 1½ oz. position on the scale 82. The weights move away from each other when one knob is turned and toward each other when the other knob is turned. The wheel with the balancing device mounted thereon is then jacked up and rotated on its axis, each of the front wheels being rotated by means of a suitable power driven spinner 123 engaging the
tread of the tire on wheel A, and the rear wheels being driven from the engine of the automobile.

With the balancing device adjusted and mounted on the wheel in the manner above described, the magnitude and location of the weight required to correct the running or dynamic unbalance of the wheel can be found by spinning the wheel at a speed at which such unbalance will produce considerable vibration and be observed visually or by sense of touch, that is, holding the knob 49a or 63a until such vibration is reduced to a minimum, and then holding the knob 25a or 39a until no vibration is produced by the rotating wheel. The wheel is then stopped and a mark noted on the wheel rim in alignment with arrow 85 thus indicating that the counterweight for correcting the unbalance of the wheel should be attached to the rim at that point, while the radial pointer 79 indicates on the scale 82, the magnitude of such correction weight. A correction weight of the magnitude indicated on the scale 82 is then applied to the outside flange of the wheel rim at the point indicated by the pointer to thereby correct the unbalance of the wheel. The balancing device is then removed from the wheel by disengaging the curved ends 84a of finger 84 from the rim thereof. Stopping or slowing down the rotation of knob 25a with the rotating wheel, produces relative rotary movement of said wheel and the two balancing weights 76 and 76a in one direction; and stopping or slowing down the rotation of knob 28a produces relative rotary movement of said wheel and balancing weights in the opposite direction. Thus, by manipulating knobs 25a and 39a, the cage 7 and the weights 76 and 76a may be rotated in either direction as a unit relative to the rotating wheel and the mounting disc 16 fixed thereto so that when the vibration of the rotating wheel is reduced to a minimum, both weights are located on the side of the wheel opposite the heavy spot therein and are located on opposite sides of and equally distant from a diametrical line passing through the heavy spot of the wheel. Stopping or slowing down the rotation of one of the two knobs 49a and 63a with the rotating wheel causes the two rotating weights 76 and 76a to move equal distances toward one another, thereby increasing the effective counterweight; and a similar manipulation of the other of said knobs causes said weight to move equal distances away from each other for increasing the counterbalancing effect thereof. When the weights 76 and 76a are diametrically opposite each other, they are in equilibrium and have no countervailing effect on the wheel; and when they are swung together they provide a maximum counterbalancing effect.

The operation of the device illustrated in Figs. 20 through 25 of the drawings is similar to that described in the preferred embodiment of the invention. The plate 107 being moved off center in ways 111 and then rotatably adjusted on the gear ring 17, will point the position at which the counterweight is to be applied to the rim.

From the foregoing it is obvious that the herebefore described wheel balancing device is lightweight, compact and simple as well as economical to manufacture. The device can be easily carried by the hand and readily mounted on and dismounted from the wheel as a complete self-contained unit. The location and magnitude of the correction weight required to balance the wheel can be quickly and easily determined merely by lightly gripping the different readily accessible central knobs of the unit as it rotates with the wheel.

Obviously, the hereinbefore described balancing device admits of considerable modification without departing from the construction shown and described. Therefore, I do not wish to be limited to the precise construction shown and described.

What I claim is:

1. A device for correcting the dynamic unbalance of a rotating wheel comprising a frame structure carried by the rotating wheel, a housing on said frame movable relative thereto, two balancing weights movably carried on said housing, separate balancing weight adjusting control means coaxial with the axis of wheel rotation located adjacent said housing, a first gear train in said housing continuously connecting one of said control means with said balancing weights for adjusting said weights relative to each other comprising spur, worm and bevel gearing for reversely adjusting the weights, a second gear train in said housing continuously connecting another of said control means with said frame for adjusting said housing and weights as a unit relative to said frame comprising spur and worm gearing for moving the weights as a unit, said control means being fixed against axial displacement while rotating during wheel balancing and being controllable solely by a change in speed relative to wheel speed, a pin in one of the spur gears in said first gear train; and an arm secured to another gear in said train and being adapted to engage said pin for arresting the motion in said train.

2. A device for correcting the dynamic unbalance of a rotating wheel comprising a frame structure carried by the rotating wheel, a housing located on the outside of said frame and having a portion disposed within said frame, said housing being movable relative to said frame, two balancing weights movably carried on said housing portion within the frame structure, separate balancing weight adjusting control means coaxial with the axis of wheel rotation located adjacent said housing, a first gear train consisting of spur, worm and bevel gearing in said housing continuously connecting some of said control means with said balancing weights for reversely adjusting said weights relative to each other, and a second gear train consisting of spur and worm gearing continuously connecting another of said control means with said frame for adjusting said housing and weights as a unit relative to said frame, said control means being fixed against axial displacement while rotating during wheel balancing and being controllable solely by a change in speed relative to wheel speed, a pin in one of the spur gears in said first gear train; and an arm secured to another gear in said train and being adapted to engage said pin for arresting the motion in said train.

3. A device for use in determining and correcting the dynamic unbalance in a rotating wheel comprising a frame carried by the rotating wheel, a housing mounted on said frame at the outside thereof, said housing having a portion projecting inwardly from said housing for rotation therewith as a unit, and to move relative to said housing for angular movement relative to each other, first rotary control means extending from said housing coaxially of the
wheel axis, a first gear train consisting of spur, worm and bevel gearing in said housing directly connecting said first control means at all times with said balancing weights to reversely effect said angular movement thereof relative to each other, second rotary control means extending from said housing also coaxially of the wheel axis, and a second gear train consisting of spur and worm gearing in said housing directly connecting said second control means at all times with said first gear train to effect rotary movement of said housing and balancing weights as a unit relative to said frame, said rotary control means and connected gear trains being fixed against axial displacement and said control means being effective solely upon a change in rate of rotation to a speed different from the speed of rotation of the wheel, a pin in one of the spur gears in said first gear train; and an arm secured to another gear in said second gear train in position to engage said pin for arresting the motion in said train.

4. A device for determining and correcting the dynamic unbalance in a rotating wheel comprising a frame carried by the rotating wheel, a housing on said frame mounted to rotate with and relative to said frame, a pair of balancing weights carried by said housing to rotate as a unit therewith and to be movable angularly relative to each other, first rotary control means extending from said housing coaxially with the wheel, a first gear train consisting of spur and worm gearing in said housing at all times directly connecting said first control means with said frame to rotate said housing and weights as a unit in either direction relative to said frame, second rotary control means independent of said first control means and arranged coaxial with said first control means, a second gear train consisting of bevel, worm and spur gearing independent of said first gear train in said housing at all times directly connecting said second control means with said balancing weights to move said weights angularly relative to each other to increase and decrease the angle included therebetween during rotation with said housing, all of said rotary control means being fixed against axial displacement and being rendered effective solely upon a change in rate of rotation to a rate different from that of the wheel rotation, a pin carried with a spur gear in said second train; and an arm carried with a different gear of said second train and engageable with the pin for limiting motion in said second gear train.

5. A device for determining and correcting the dynamic unbalance in a rotating wheel comprising: a frame removably mounted on the wheel to rotate therewith; a housing carried on said frame to rotate with and relative to said frame; a pair of balancing weights carried by said housing normally to rotate as a unit with said housing and frame; a first pair of rotary control means adjacent said housing in the axis of wheel rotation, said control means being fixed against axial movement; a first reversible gear train consisting of spur and worm gearing in said housing directly connecting said first pair of control means with said frame at all times, one of said first pair of control means effecting rotation through said first gear train of said housing and balancing weights as a unit relative to said frame in one direction, and the other one of said first pair of control means effecting a reverse direction of rotation through reversibility of said first gear train of said housing and balancing weights as a unit relative to said frame; a second pair of rotary control means coaxial with said first pair, said second control means being fixed against axial movement; a second reversible gear train consisting of spur, bevel and worm gearing in said housing directly connecting said second pair of control means with said balancing weights at all times, one of said second pair of control means effecting angular movement through said second gear train of said housing and balancing weights relative to each other, and the other one of said second pair of control means effecting a reverse relative angular movement between said balancing weights through reversibility of said second gear train, a pin in one of the spur gears in said second gear train; and an arm secured to another gear in said second gear train in position to engage said pin for arresting the motion in said second gear train.

6. A device for determining and correcting the dynamic unbalance of a rotating wheel comprising a mounting disk carried by and adjacent one face of the wheel and coaxially rotating therewith, a housing carried on said disk coaxially with the wheel and rotatable both with and relative to said disk, a pair of weighted balancing arms pivotally connected with said housing, a first train of constantly meshing spur and worm gears in said housing including a gear driving said housing relative to said disk, a second train of constantly meshing spur, worm and bevel gears in said housing including a pair of coaxial countershafts extending from said housing into the plane of said weighted arms and a gear on each shaft connected with one of said arms, rotation of said countershaft gears oppositely moving said arms about said pivot connection, coaxially arranged pairs of shafts connected with said trains of gears, each of said shafts being connected at all times into a different one of said trains of gears, control knobs for each shaft of said pairs of shafts, said knobs being so arranged and rotated that the direction of wheel rotation to actuate the train of gears connected thereto, said first train of gears driving said housing relative to said disk also carrying said second train of gears therewith including said countershafts and weighted arms connected thereto, a pin in one of the spur gears of said second train; and an arm carried by a different spur gear of said second train, said arm being adapted to engage said pin for arresting the motion of the gear train.

LEE HUNTER, Jr.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,296,732</td>
<td>Akhmirov</td>
<td>Mar. 11, 1919</td>
</tr>
<tr>
<td>1,313,039</td>
<td>Akhmirov</td>
<td>Aug. 12, 1919</td>
</tr>
<tr>
<td>1,876,526</td>
<td>Thearle et al.</td>
<td>Sept. 6, 1932</td>
</tr>
<tr>
<td>1,876,527</td>
<td>Thearle et al.</td>
<td>Sept. 6, 1932</td>
</tr>
<tr>
<td>2,541,637</td>
<td>Ernst et al.</td>
<td>May 13, 1941</td>
</tr>
<tr>
<td>2,541,444</td>
<td>Hunter</td>
<td>Feb. 8, 1944</td>
</tr>
<tr>
<td>2,572,891</td>
<td>Fenton</td>
<td>Apr. 3, 1945</td>
</tr>
<tr>
<td>2,402,041</td>
<td>Greenleaf et al.</td>
<td>June 11, 1946</td>
</tr>
<tr>
<td>2,441,152</td>
<td>Kelleher</td>
<td>May 11, 1948</td>
</tr>
</tbody>
</table>